Applying SIFT Descriptors to Stellar Image Matching
نویسندگان
چکیده
Stellar image matching allows to verify if a given pair of images belongs to the same stellar object/area, or knowing that they correspond to the same sky area, to verify if there are some changes between them due to an stellar event (supernova event, changes in the object position, etc). Some applications are stellar photometry, telescope tracking and pointing, robot telescopes, and sky monitoring. However, the matching of stellar images is a hard problem because normally the images are taken using different telescopes, image sensors and settings, as well as from different places, which produces variability in the image’s resolution, orientation, and field of view. In this context, the aim of this paper is to propose a robust SIFT-based wide baseline matching technique for stellar images. The proposed technique was evaluated in a new database composed by 100 pairs of galaxies, nebulas and star clusters images, achieving a true positive rate of 87% with a false positive rate of 1.7%.
منابع مشابه
Robust Image Matching with Selected SIFT Descriptors
A robust image matching algorithm using a set of selected SIFT descriptors is investigated in this work. We first utilize the colorbased segmentation method and the watershed algorithm to separate foreground and background regions in images and then search the corresponding SIFT descriptors along foreground contours. These selected SIFT descriptors can offer more robust and stable image matchin...
متن کاملNew Robust Descriptor for Image Matching
Nowadays, object recognition based on feature extraction is widely used in image matching due to its robustness to different types of image transformations. This paper introduces a new approach for extracting invariant features from interest regions. This approach is inspired from the well known Scale Invariant Feature Transform (SIFT) interest points detector and aims to improve the computatio...
متن کاملAn Experimental Comparison of Image Feature Detectors and Descriptors applied to Grid Map Matching
Applying computer vision feature detectors and descriptors to occupancy grids has important practical applications for the problem of grid map matching in mobile robot localization and mapping, although this approach has received little attention by the community. This review presents a thorough performance evaluation for several combinations of detectors (Harris, KLT, SIFT and SURF) and descri...
متن کاملResearch Progress of the Scale Invariant Feature Transform (SIFT) Descriptors
The SIFT (Scale Invariant Feature Transform) is a computer vision algorithm that is used to detect and describe the local image features. The SIFT features are robust to changes in illumination, noise, and minor changes in viewpoint. The SIFT features have been used object recognition, image retrieval and matching, and so on.. The research of SIFT descriptors and improved SIFT descriptors is im...
متن کاملAttributed Graph Matching for Image-Features Association Using SIFT Descriptors
Image-features matching based on SIFT descriptors is subject to the misplacement of certain matches due to the local nature of the SIFT representations. Some well-known outlier rejectors aim to remove those misplaced matches by imposing geometrical consistency. We present two graph matching approaches (one continuous and one discrete) aimed at the matching of SIFT features in a geometrically co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008